Alternate class I MHC antigen processing is inhibited by Toll-like receptor signaling pathogen-associated molecular patterns: Mycobacterium tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide.
نویسندگان
چکیده
Pathogen-associated molecular patterns (PAMPs) signal through Toll-like receptors (TLRs) to activate immune responses, but prolonged exposure to PAMPs from Mycobacterium tuberculosis (MTB) and other pathogens inhibits class II MHC (MHC-II) expression and Ag processing, which may allow MTB to evade CD4(+) T cell immunity. Alternate class I MHC (MHC-I) processing allows macrophages to present Ags from MTB and other bacteria to CD8(+) T cells, but the effect of PAMPs on this processing pathway is unknown. In our studies, MTB and TLR-signaling PAMPs, MTB 19-kDa lipoprotein, CpG DNA, and LPS, inhibited alternate MHC-I processing of latex-conjugated Ag by IFN-gamma-activated macrophages. Inhibition was dependent on TLR-2 for MTB 19-kDa lipoprotein (but not whole MTB or the other PAMPs); inhibition was dependent on myeloid differentiation factor 88 for MTB and all of the individual PAMPs. Inhibition of MHC-II and alternate MHC-I processing was delayed, appearing after 16 h of PAMP exposure, as would occur in chronically infected macrophages. Despite inhibition of alternate MHC-I Ag processing, there was no inhibition of MHC-I expression, MHC-I-restricted presentation of exogenous peptide or conventional MHC-I processing of cytosolic Ag. MTB 19-kDa lipoprotein and other PAMPs inhibited phagosome maturation and phagosome Ag degradation in a myeloid differentiation factor 88-dependent manner; this may limit availability of peptides to bind MHC-I. By inhibiting both MHC-II and alternate MHC-I Ag processing, pathogens that establish prolonged infection of macrophages (>16 h), e.g., MTB, may immunologically silence macrophages and evade surveillance by both CD4(+) and CD8(+) T cells, promoting chronic infection.
منابع مشابه
Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis.
Mycobacterium tuberculosis (MTB) induces vigorous immune responses, yet persists inside macrophages, evading host immunity. MTB bacilli or lysate was found to inhibit macrophage expression of class II MHC (MHC-II) molecules and MHC-II Ag processing. This report characterizes and identifies a specific component of MTB that mediates these inhibitory effects. The inhibitor was extracted from MTB l...
متن کاملInhibition of IFN-gamma-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion.
Mycobacterium tuberculosis (MTB) persists inside macrophages despite vigorous immune responses. MTB and MTB 19-kDa lipoprotein inhibit class II MHC (MHC-II) expression and Ag processing by a Toll-like receptor 2-dependent mechanism that is shown in this study to involve a defect in IFN-gamma induction of class II transactivator (CIITA). Exposure of macrophages to MTB or MTB 19-kDa lipoprotein i...
متن کاملInhibition of major histocompatibility complex II expression and antigen processing in murine alveolar macrophages by Mycobacterium bovis BCG and the 19-kilodalton mycobacterial lipoprotein.
Alveolar macrophages constitute a primary defense against Mycobacterium tuberculosis, but they are unable to control M. tuberculosis without acquired T-cell immunity. This study determined the antigen-presenting cell function of murine alveolar macrophages and the ability of the model mycobacterium, Mycobacterium bovis BCG, to modulate it. The majority (80 to 85%) of alveolar macrophages expres...
متن کاملRecombinant Lipoprotein Rv1016c Derived from Mycobacterium tuberculosis Is a TLR-2 Ligand that Induces Macrophages Apoptosis and Inhibits MHC II Antigen Processing
TLR2-dependent cellular signaling in Mycobacterium tuberculosis-infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these eff...
متن کاملExosomes Released from M.tuberculosis Infected Cells Can Suppress IFN-γ Mediated Activation of Naïve Macrophages
BACKGROUND Macrophages infected with Mycobacterium tuberculosis (M.tb) are known to be refractory to IFN-γ stimulation. Previous studies have shown that M.tb express components such as the 19-kDa lipoprotein and peptidoglycan that can bind to macrophage receptors including the Toll-like receptor 2 resulting in the loss in IFN-γ responsiveness. However, it is unclear whether this effect is limit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 171 3 شماره
صفحات -
تاریخ انتشار 2003